PhD Position on Forest Microclimate and Biodiversity Under Anthropogenic Climate Change

The research unit “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN) is launching an open call for a PhD position in Ecology & Biostatistics. We are looking for a PhD candidate interested in climate change biology, forest sciences and statistical modelling. The PhD position is part of a research project entitled “Impacts of Microclimatic Processes on foRest bIodiversity redistributioN under macroclimaTe warming” (IMPRINT) and funded by the Agence National de la Recherche (ANR).


Context and description of the PhD position:

Species distribution models (SDMs), the toolbox to project biodiversity redistribution under anthropogenic climate change, are based on ambiant-air temperature (i.e. macroclimate) but fail to capture the local variability of microclimatic conditions. Yet, these local variations can lead to huge differences between apparent temperatures near the ground (i.e. the temperature conditions experienced by living organisms in their habitats) and air-temperatures measured by meteorological weather stations. This is especially true in the understory of forest ecosystems, which are decoupled from exterior climatic fluctuations and where management practices will have a prominent role in mediating the processes underlying microclimate. Very recent progress has been made to interpolate microclimate at very fine spatial resolution by combining in-situ microclimate measurements with fine-grained environmental variables derived from remotely sensed images such as light detection and ranging (LiDAR) images. However, these fine-grained spatial interpolations are not dynamic over time and unlikely to reflect the long-term dynamic of climate but rather the weather conditions that prevailed during the year the microclimatic data where recorded. Did sub-canopy temperature conditions increased as much as the warming trend observed in several networks of weather stations during the last decades? How forest-dwelling species are responding to long-term changes in microclimatic conditions below the forest canopy? Within the framework of IMPRINT, the PhD thesis will provide answers to these research questions, by combining: (i) in-situ microclimate measurements (both temperature and humidity near the ground); (ii) high-resolution LiDAR images; and most important (iii) long-term synoptic data from a network of permanent weather stations installed close to forest ecosystems (RENECOFOR). Throughout her/his PhD, the candidate will set up and coordinate two national networks of in-situ forest microclimate measurements. The first network, level I sites, aims at capturing the entire macroclimatic gradient covered by deciduous temperate forest in France. The candidate will be able to rely on an existing network (RENECOFOR) of 102 long-term (since 1995) permanent plots, which are not yet equipped with miniature data loggers. The second network, level II sites, aims at capturing the variability in forest microclimatic conditions due to forest management practices, ranging from very open forest stands to very dense and closed forest stands. To reach this aim, the PhD candidate will install a network of 60 permanent plots along a gradient of canopy closure within each of three large forests in France (FD de l’Aigoual, FD de Blois, FD de Mormal), dominated by oak and beech and managed by the French National Forest Service (ONF). Each plot will be equipped with miniature data loggers to record microclimatic conditions every hour. Forest inventory surveys as well as floristic surveys and arthropod surveys will be performed throughout the PhD thesis. Based on the data collected in the field, the candidate will model forest microclimatic conditions over time and its impact on the redistribution of forest-dwelling species under anthropogenic climate change.

Location of the 48 sites (a) from the forest ecosystem research network (RENECOFOR) which are located in temperate deciduous forests in France, of which 3 (Mormal, Blois, Aigoual) are equipped with long-term weather stations: (b) CHP59; (c) CHS41; and (d) HET30. Two putative windows of 2 km × 2 km each are displayed: one for model calibration and one for model validation. One putative window in Mormal shows the putative locations of miniature data-logger and biodiversity surveys (e) with a zooming window on one of these locations (f). Maps were drawn by Emilie Gallet-Moron.

The candidate is expected to have the following qualifications:

  • A degree in forest sciences, ecology or environmental sciences;
  • Basic knowledge and interest in modeling and advanced statistical analyses;
  • Coding skills in Free and Open Source environments (e.g. R);
  • Experience in remote sensing or GIS software;
  • Good oral and written communication skills in English;
  • Strong collaborative skills;
  • Ability to be autonomous.

In addition to these qualifications, we recommend the candidate to have a driving licence and preferably have her/his own car. Indeed, there will be numerous field trips to several forest sites throughout France, some located very far from the lab in Amiens. All field trip expenses (i.e. travel, food and accommodation expenses) as well as any participation to workshops and conferences throughout the PhD thesis duration will be covered by the research budget, which is funded by the ANR.

Supervisors and collaborators:

The candidate will be supervised by Jonathan Lenoir (JL, full researcher at CNRS), Ronan Marrec (RM, assistant professor at Jules Verne University of Picardy) and Guillaume Decocq (GD, full professor at Jules Verne University of Picardy), in close collaboration with Emilie Gallet-Moron (EGM, GIS engineer at Jules Verne university of Picardy), Fabien Spicher (FS, assistant engineer at Jules Verne University of Picardy) and Vincent le Roux (VLR, assistant professor at Jules Verne University of Picardy). At a national level, the PhD candidate will benefit scientific and technical supports from Sylvie Durrieu (full researcher at IRSTEA Montpellier) and Samuel Alleaume (research engineer at IRSTEA Montpellier), both experts in remote sensing technologies (i.e. airborne and terrestrial LiDAR). At the international level, the PhD candidate will have the opportunity to interact with several close collaborators, including: Pieter De Frenne from Gent University (Belgium); Jonas Lembrechts From Antwerp University (Belgium); Kristoffer Hylander from Stockhom University (Sweden); and Miska Luoto from the University of Helsinki (Finland).


The candidate will be based within the research unit « Ecologie et Dynamique des Systèmes Anthjropisés » (EDYSAN, CNRS, Jules Verne University of Picardy, Amiens, France). EDYSAN is a young, diverse, vibrant and international research unit which research focuses on the impact of global change drivers (climate change, land-use changes and biological invasions) on forest ecosystems and agricultural landscapes.


The PhD position should optimally start on January 6th 2020. For further information, please contact: Dr. Jonathan Lenoir (


Three years

Gross salary:

2 135 EUR/month

Application procedure:

To apply to this PhD position, you will need to send your application through the CNRS job portal, available both in French and in English. Scroll down towards the bottom of the webpage to find the “Search our Job Offers” button and look for this PhD position that should appear on the CNRS job portal from 1st October 2019 and should remain active for 21 days. You will need to register in the CV database and submit your application files via the CNRS job portal. To register, go to the “Candidate Area” at the bottom of the CNRS job portal and follow the instructions to create your own account. Please upload your CV together with a cover letter and the contact information of 3 references. For more information, you may contact Jonathan Lenoir ( The application deadline is October 22nd 2019.

1 thought on “PhD Position on Forest Microclimate and Biodiversity Under Anthropogenic Climate Change

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s