Call for a Postdoc Position in Eco-Oncology

We would like to advertise a postdoctoral position for 15 months funded by the Hauts-de-France region within the framework of our project PICCell – Predicting biological Invasion, at the interface between invasive speCies and Cancer cells.

Context and main objectives

Though playing out at very different levels of life organization, cancer cells and invasive alien species (IAS) involve similar processes of invasion, growth and spread. Few recent studies at the frontier between ecology and oncology (i.e., eco-oncology) have made the parallel between both disciplines, calling for interdisciplinary research to better understand the mechanisms that underly invasion success of IAS and cancer cells (e.g. Noorbakhsh et al. 2020, Reynolds et al. 2020, Neinavaie et al., 2021). The PICCell project addresses this challenge by combining the expertise of researchers in both invasion ecology and experimental oncology. PICCell relies on the hypothesis that the “construction” of a new ecological niche is a key step towards the successful invasion for cancer cells and IAS. The bilateral objectives of this interdisciplinary project are: (i) to apply IAS invasion ecology approaches to medical oncology in order to better understanding the mechanisms of tumor invasion and to predict the occurrence and distribution of metastases within target organs; (ii) to use the know-how of medical oncology to better understand the construction of the ecological niche generated by the arrival of an IAS; (iii) to initiate research actions in eco-oncology in order to improve our understanding of invasion success and to decipher the Darwinian and random mechanisms that are key to this success. The tasks proposed to meet these objectives consist in: (1) the application of the niche concept and the so-called species distribution models (SDMs) to cancer cells within the micro-environment of key organs (e.g., the pancreas) to predict the spatial distribution of cancer cells given microenvironmental constraints; and (2) the development of a research consortium.

Main tasks

The successful candidate will apply SDMs’ tools to model the realized niche of human pancreatic cancer cells and identify the micro-environmental variables explaining their distributions (definition of an environmental raster) so as to predict the potential distribution of local (primary tumor) and distant (metastasis) cancer cells. His/her main tasks will be:

  • To ensure an active research survey of academic works and scientific literature at the interface between invasion ecology and experimental oncology;
  • To coordinate the “upstream” steps of the modelling of the realized niche of cancer cells as a function of micro-environmental conditions (e.g., concentration of elements with cells) within cells of the focal organ (i.e., the pancreas);
  • To be in charge of collecting biological, clinical, and “micro-environmental” data from the different partners and contributors involved in PICCell. The candidate will work in close collaboration with a Master 2 student to be recruited to collect and process histopathological data (i.e., cancer cell occurrence data as well as data on micro-environmental conditions in the pancreas) from microscope slides in a “spatialized” and contiguous format, such as raster grids as it is typically used in SDMs in ecology (see below for a more detailed list of tasks);
  • To participate in creating, structuring and moderating the PICCell consortium. The candidate will have a key role in the dialogue between the different partners of the project. She/he will be responsible for identifying and linking their respective skills, thereby anchoring the development of cross-disciplinary issues between ecology and experimental oncology;
  • To implement the following modelling steps, from “tumour” versus “non-tumour” pancreatic histological sections of human and mouse models:
    1. Collect and extract the scenopoetic and bionomic predictive micro-environmental variables obtained from histopathological sections (cf. microscopic slides and pre-processing phase);
    2. Calibrate ecological niche models by correlating the relevant micro-environmental variables with the occurrence and absence of tumour cells in the histological sections;
    3. Project the probabilistic distributions of cancer cell occurrence across independent sets of histological sections for model validation (cf. assessing model interpolation and extrapolation capabilities);
    4. Develop a specific approach to forecast the establishment of metastases in distant organs (i.e., model transferability).
  • To deliver the modelling work carried out in the form of communications and scientific publications with an international audience;
  • To impulse a prospective dynamic by using PICCell as a prism to mobilize other partner teams, new ideas and other sources of funding.

Qualifications

A Ph.D. in numerical ecology, ecoinformatics or a related field. The successful applicant will have:

  • Experience working (or strong interest) on theoretical ecology (familiar with the niche concept);
  • Experience with statistical and modelling tools applied to spatial ecology (e.g., spatial analysis);
  • Good programming skills in the R language or equivalent (Python);
  • Ability to work in a team and interest in interdisciplinarity;
  • Excellent oral and written English language skills;
  • Capacity to work autonomously but also collaboratively.

Where

At the UMR CNRS 7058 « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN), 80000 Amiens, France.

Starting date and duration

As early as September 4th 2023 and no later than October 2nd 2023. The postdoctoral position is for 15 months.

Gross salary

To be discussed depending on the experience of the successful candidate.

Application instructions

Applicants must submit a cover letter indicating the date that they will be available to begin the position, a curriculum vitae, copies of 2 publications relevant to the call. Applicants should include names and e-mail addresses for two potential referees.

All application materials must be submitted as PDF(s) in a single email by the closing date, on July 21st 2023, to:

  • Annie Guiller (Prof., PI of PICCell): annie.guiller@u-picardie.fr
  • Jonathan Lenoir (CNRS Researcher): jonathan.lenoir@u-picardie.fr
  • Mathieu Gautier (Prof.) : mathieu.gautier@u-picardie.fr

Collaborators

  • Service d’Anatomie et de Cytologie Pathologiques, CHU d’Amiens
  • UMR CNRS 7369 MEDyC
  • LPCM UR-UPJV 4667
  • UMR-S 1172

Offre de Stage M2 en Ecologie Forestière : Est-ce que la Niche Climatique Réalisée des Essences à Introduire Existe ou Existera dans la Forêt Française ?

Stage de M2 (ou équivalent) de 6 Mois dans l’UMR CNRS 7058 « Ecologie et Dynamiques des Systèmes Anthropisés »

Contexte de l’étude : Toute espèce possède une aire géographique de répartition naturelle (= aire d’indigénat). Dans cette aire règnent des conditions macroclimatiques particulières (températures moyennes et extrêmes, total et répartition des précipitations, etc.). L’ensemble intégré de ces conditions bioclimatiques définit la « niche climatique réalisée » de l’espèce. L’acclimatation d’une espèce dans une région d’où elle était auparavant absente (= aire exotique d’introduction) implique qu’elle y retrouve au moins une partie de sa niche climatique réalisée. Le Plan national Forest Bois (PNFB) et ses déclinaisons régionales (PRFB) prévoient d’adapter la forêt française aux changements climatiques. L’une des stratégies est l’introduction d’espèces d’arbre adaptées à des climats plus chauds et secs. Des listes régionales d’espèces éligibles à subvention ont été établies par arrêté préfectoral dans chaque région de France métropolitaine. Sur les 129 espèces d’arbre listées (hors hybrides, clones de peupliers et arbustes d’accompagnement), 67 (52 %) sont exotiques pour la France, la plupart venant d’autres continents.

Objectifs de l’étude : Vérifier que les 67 espèces exotiques préconisées pour adapter la forêt française aux changements climatiques puissent effectivement retrouver leur niche climatique réalisée en France, actuellement et selon les prévisions du GIEC à l’horizon 2100. Pour les espèces retrouvant leur niche climatique réalisée en France, vérifier si les conditions édaphiques de la zone d’indigénat existent également dans l’aire de répartition potentielle (suivant la niche climatique) et analyser quelques éléments clés des interactions biotiques connues pour les 67 espèces exotiques.

Méthode : Dans un premier temps, une cartographie de l’aire d’indigénat de chaque espèce (d’après bases de données disponibles, notamment GBIF : https://www.gbif.org/fr/) sera dressée. Un ensemble de 19 variables bioclimatiques sera extrait (i) pour chaque pixel de 1 km2 au sein de l’aire d’indigénat à partir de la base de données CHELSA (https://chelsa-climate.org) et (ii) pour chaque pixel de 1 km2 de la France métropolitaine. Pour la France, ces variables seront extraites d’une part pour la climatologie (cf. moyennes trentenaires) la plus récente qui soit disponible (1981-2010) et d’autre part pour les 2 climatologies futures (2041-2070 et 2071-2100) suivant trois des cinq scénarios socio-économiques de référence (cf. SSP pour Shared Socioeconomic Pathways) proposés dans le dernier rapport du GIEC : SSP 1-2.6 (scénario de développement durable) ; SSP 3-7.0 (scénario de rivalités régionales) ; et SSP 5-8.5 (développement basé sur les énergies fossiles). Pour l’aire d’indigénat, seules les conditions bioclimatiques de la climatologie la plus récente (1981-2010) seront extraites. Une analyse en composantes principales (ACP) de la matrice globale [N pixels géographiques de 1 km2 × 19 variables bioclimatiques] sera conduite pour chacune des 67 espèces, chacune des 3 climatologies et chacun des 3 scénarios pour les 2 climatologies futures, soit 476 ACP au total, avec à chaque fois l’information d’appartenance du pixel à une aire géographique (France vs. aire d’indigénat). Pour chaque espèce, seules les conditions bioclimatiques des pixels de la France changent avec les 3 scénarios du GIEC pour les 2 climatologies futures tandis que les conditions bioclimatiques dans l’aire d’indigénat restent celles de la climatologie la plus récente. Pour chacune des 476 ACP, l’intersection entre les deux ensembles (France vs. aire d’indigénat) représente donc la part de la niche climatique réalisée actuelle de l’espèce qui se retrouve ou se retrouvera (suivant le scénario futur) en France. Les pixels « France » de l’intersection seront ensuite projetés sur une carte de France pour chaque espèce à chacune des 3 périodes climatologiques étudiées (1981-2010, 2041-2070, 2071-2100) et ce pour les trois scénarios du GIEC concernant les 2 climatologies futures. L’analyse des cartes individuelles permettra de vérifier si la niche climatique réalisée existe ou pas ; quand elle existe, si elle va perdurer ou si elle est amenée à disparaître dès 2041-2070 ou 2071-2100 ; quand elle n’existe pas, si elle est amenée à exister en 2041-2070 ou 2071-2100.

Début du stage : janvier à février 2022

Durée : 6 mois

Candidature : Envoyer lettre de motivation + CV à guillaume.decocq@u-picardie.fr et jonathan.lenoir@u-picardie.fr

Références conseillées pour la méthode :

Wasof S, Lenoir J, Aarrestad Pa, Alsos IG, Armbruster WS, Austrheim G, Bakkestuen V, Birks HJB, Bråthen KA, Broennimann O, Brunet J, Bruun HH, Dahlberg CJ, Diekmann M, Dullinger S, Dynesius M, Ejrnaes R, Gégout JC, Graae BJ, Grytnes JA, Guisan A, Hylander K, Jonsdottir IS, Kapfer J, Klanderud K, Luoto M, Milbau A, Moora M, Nygaard B, Odland A, Pauli H, Ravolainen V, Reinhardt S, Sandvik SM, Høistad Schei F, Speed JDM, Svenning JC, Thuiller W, Tveraabak LU, Vandvik V, Velle LG, Virtanen R, Vittoz P, Willner W, Wohlgemuth T, Zimmermann NE, Zobel M, Decocq G. 2015. Disjunct populations of European vascular plant species keep the same climatic niches. Global Ecology and Biogeography 24: 1401–1412.

Kambach S, Lenoir J, Decocq G, Welk E, Seidler G, Dullinger S, Gégout JC, Guisan A, Pauli H, Svenning JC, Vittoz P, Willner W, Wohlgemuth T, Zimmermann N, Bruelheide H. 2019. Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography 42 : 467–477.

Offre de Stage M2 en Ecologie Forestière : Biodiversité & Microclimat Forestier

Contexte du stage : Ce stage concerne le projet IMPRINT (Impacts of Microclimatic Processes on foRest bIodiversity redistributioN under macroclimaTe warming), financé par l’outil JCJC “Jeunes Chercheuses Jeunes Chercheurs” de l’Agence National de la Recherche (ANR). Pour en savoir plus sur le projet, voir le site internet dédié. Les températures réellement ressenties par la biodiversité – microclimat – peuvent être très différentes du macroclimat régional, surtout au sein des écosystèmes forestiers. Les températures extrêmes y sont tamponnées, en moyenne de 4 à 5 °C pour les températures maximales. Face au réchauffement global déjà amorcé, la forêt peut ainsi jouer un rôle de refuge pour les espèces. Ce projet vise à quantifier et à modéliser les processus qui relient le microclimat au macroclimat, sur de grandes étendues spatiales et à une résolution spatiotemporelle fine. Ceci, afin de reconstruire le microclimat passé, à partir d’observations issues de postes météo permanents. L’objectif ultime du projet IMPRINT est d’utiliser cette reconstruction à long terme du microclimat sous-couvert forestier pour améliorer la prédiction de la distribution future des espèces, en lien avec le changement climatique. Ce projet est innovant par son approche méthodologique, qui combine des sources de données complémentaires pour modéliser le microclimat :

  1. Capteurs de température et d’humidité du sol
  2. Stations météorologiques
  3. Télédétection par LiDAR aéroporté

Quelques références en libre-accès sur le sujet :

  1. [Lenoir et al. 2017] : Climatic microrefugia under anthropogenic climate change: implications for species redistribution
  2. [Lembrechts et al. 2019] : Incorporating microclimate into species distribution models

Objectif du stage : La flore et les arthropodes du sol sont des composantes majeures dans le fonctionnement de l’écosystème forestier, car ils jouent un rôle important sur le fonctionnement des cycles biogéochimiques et sur la provision de certains services écosystémiques. Ces deux groupes seront étudiés dans le cadre du projet IMPRIINT pour explorer le lien entre microclimat et diversité taxonomique et fonctionnelle. Au total, 180 placettes de suivi du microclimat ont été mises en place durant l’été 2020 dans trois forêts domaniales : Blois, Mormal et l’Aigoual. Sur chacune de ces placettes, un capteur de température a été placé à 1 m au-dessus du sol, et un second a été enterré à 8 cm dans le sol. Une importante phase de terrain aura lieu à la fin du printemps – début de l’été, afin de récupérer les données enregistrées par les capteurs, et de réaliser des inventaires de flore sur 400 m². La ou le stagiaire sera aussi sollicité(e) pour participer à une campagne d’inventaire de la faune du sol qui sera réalisé par piégeage (pose de pièges passifs de type Barber). L’accent sera mis pendant le stage sur la composante floristique, dont les données seront disponibles immédiatement pour analyse, contrairement aux inventaires d’arthropodes qui nécessitent de longs mois d’identification en laboratoire. Suite aux missions de terrain, la ou le stagiaire prospectera des relations univariées et multivariées entre les données de biodiversité et les autres données acquises dans le cadre du projet, entre autres des inventaires dendrométriques et des mesures de l’ouverture de la canopée, ainsi que les mesures du microclimat forestier (air et sol) dans les 180 placettes.

Profil recherché : Nous cherchons un(e) étudiant(e) curieux(se) et rigoureux(se), au profil master recherche et/ou ingénieur. Un fort intérêt pour l’écologie forestière, la botanique, la biostatistique et la programmation sous le logiciel libre R est demandé. Le ou la stagiaire devra être capable de faire un travail bibliographique, de comprendre et synthétiser des articles scientifiques en anglais. De bonnes bases en identification botanique seront appréciées, de même que des compétences dans un ou plusieurs des domaines mentionnés ci-dessus, compétences qui pourront être acquises ou renforcées au cours du stage. Une grande partie du stage se réalisant en forêt, le ou la candidate devra montrer un goût prononcé pour le terrain. En effet, de nombreux déplacements sur les sites, parfois éloignés et dans des conditions difficiles (relief, météo…), sont à prévoir.

Période de stage : Stage recherche/ingénieur de 6 mois pouvant démarrer dès Mars 2021.

Financement : Une gratification de stage de 577 EUR/mois est assurée dans le cadre du projet IMPRINT financé par l’ANR. A noter également que les remboursements des frais de mission (repas, frais kilométrique si utilisation d’un véhicule personnel) couvriront largement les dépenses à avancer. Les frais d’hébergement seront directement pris en charge par le CNRS.

Encadrement : Le candidat ou la candidate retenu(e) sera principalement encadré(e) par Fabien Spicher, Ronan Marrec et Eva Gril, en collaboration avec les autres membres de l’équipe IMPRINT : Jonathan Lenoir, Vincent Le Roux, Emilie Gallet-Moron et Boris Brasseur.

Institution d’accueil : EDYSAN, unité mixte de recherche (UMR 7058 CNRS-UPJV) située à Amiens

Candidature : Envoyez un CV et une lettre de motivation à Fabien Spicher (fabien.spicher@u-picardie.fr), Ronan Marrec (ronan.marrec@u-picardie.fr) et Eva Gril (eva.gril@u-picardie.fr).

PhD Position on Forest Microclimate and Biodiversity Under Anthropogenic Climate Change

The research unit “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN) is launching an open call for a PhD position in Ecology & Biostatistics. We are looking for a PhD candidate interested in climate change biology, forest sciences and statistical modelling. The PhD position is part of a research project entitled “Impacts of Microclimatic Processes on foRest bIodiversity redistributioN under macroclimaTe warming” (IMPRINT) and funded by the Agence National de la Recherche (ANR).

IMPRINT

Context and description of the PhD position:

Species distribution models (SDMs), the toolbox to project biodiversity redistribution under anthropogenic climate change, are based on ambiant-air temperature (i.e. macroclimate) but fail to capture the local variability of microclimatic conditions. Yet, these local variations can lead to huge differences between apparent temperatures near the ground (i.e. the temperature conditions experienced by living organisms in their habitats) and air-temperatures measured by meteorological weather stations. This is especially true in the understory of forest ecosystems, which are decoupled from exterior climatic fluctuations and where management practices will have a prominent role in mediating the processes underlying microclimate. Very recent progress has been made to interpolate microclimate at very fine spatial resolution by combining in-situ microclimate measurements with fine-grained environmental variables derived from remotely sensed images such as light detection and ranging (LiDAR) images. However, these fine-grained spatial interpolations are not dynamic over time and unlikely to reflect the long-term dynamic of climate but rather the weather conditions that prevailed during the year the microclimatic data where recorded. Did sub-canopy temperature conditions increased as much as the warming trend observed in several networks of weather stations during the last decades? How forest-dwelling species are responding to long-term changes in microclimatic conditions below the forest canopy? Within the framework of IMPRINT, the PhD thesis will provide answers to these research questions, by combining: (i) in-situ microclimate measurements (both temperature and humidity near the ground); (ii) high-resolution LiDAR images; and most important (iii) long-term synoptic data from a network of permanent weather stations installed close to forest ecosystems (RENECOFOR). Throughout her/his PhD, the candidate will set up and coordinate two national networks of in-situ forest microclimate measurements. The first network, level I sites, aims at capturing the entire macroclimatic gradient covered by deciduous temperate forest in France. The candidate will be able to rely on an existing network (RENECOFOR) of 102 long-term (since 1995) permanent plots, which are not yet equipped with miniature data loggers. The second network, level II sites, aims at capturing the variability in forest microclimatic conditions due to forest management practices, ranging from very open forest stands to very dense and closed forest stands. To reach this aim, the PhD candidate will install a network of 60 permanent plots along a gradient of canopy closure within each of three large forests in France (FD de l’Aigoual, FD de Blois, FD de Mormal), dominated by oak and beech and managed by the French National Forest Service (ONF). Each plot will be equipped with miniature data loggers to record microclimatic conditions every hour. Forest inventory surveys as well as floristic surveys and arthropod surveys will be performed throughout the PhD thesis. Based on the data collected in the field, the candidate will model forest microclimatic conditions over time and its impact on the redistribution of forest-dwelling species under anthropogenic climate change.

Location of the 48 sites (a) from the forest ecosystem research network (RENECOFOR) which are located in temperate deciduous forests in France, of which 3 (Mormal, Blois, Aigoual) are equipped with long-term weather stations: (b) CHP59; (c) CHS41; and (d) HET30. Two putative windows of 2 km × 2 km each are displayed: one for model calibration and one for model validation. One putative window in Mormal shows the putative locations of miniature data-logger and biodiversity surveys (e) with a zooming window on one of these locations (f). Maps were drawn by Emilie Gallet-Moron.

The candidate is expected to have the following qualifications:

  • A degree in forest sciences, ecology or environmental sciences;
  • Basic knowledge and interest in modeling and advanced statistical analyses;
  • Coding skills in Free and Open Source environments (e.g. R);
  • Experience in remote sensing or GIS software;
  • Good oral and written communication skills in English;
  • Strong collaborative skills;
  • Ability to be autonomous.

In addition to these qualifications, we recommend the candidate to have a driving licence and preferably have her/his own car. Indeed, there will be numerous field trips to several forest sites throughout France, some located very far from the lab in Amiens. All field trip expenses (i.e. travel, food and accommodation expenses) as well as any participation to workshops and conferences throughout the PhD thesis duration will be covered by the research budget, which is funded by the ANR.

Supervisors and collaborators:

The candidate will be supervised by Jonathan Lenoir (JL, full researcher at CNRS), Ronan Marrec (RM, assistant professor at Jules Verne University of Picardy) and Guillaume Decocq (GD, full professor at Jules Verne University of Picardy), in close collaboration with Emilie Gallet-Moron (EGM, GIS engineer at Jules Verne university of Picardy), Fabien Spicher (FS, assistant engineer at Jules Verne University of Picardy) and Vincent le Roux (VLR, assistant professor at Jules Verne University of Picardy). At a national level, the PhD candidate will benefit scientific and technical supports from Sylvie Durrieu (full researcher at IRSTEA Montpellier) and Samuel Alleaume (research engineer at IRSTEA Montpellier), both experts in remote sensing technologies (i.e. airborne and terrestrial LiDAR). At the international level, the PhD candidate will have the opportunity to interact with several close collaborators, including: Pieter De Frenne from Gent University (Belgium); Jonas Lembrechts From Antwerp University (Belgium); Kristoffer Hylander from Stockhom University (Sweden); and Miska Luoto from the University of Helsinki (Finland).

Where:

The candidate will be based within the research unit « Ecologie et Dynamique des Systèmes Anthjropisés » (EDYSAN, CNRS, Jules Verne University of Picardy, Amiens, France). EDYSAN is a young, diverse, vibrant and international research unit which research focuses on the impact of global change drivers (climate change, land-use changes and biological invasions) on forest ecosystems and agricultural landscapes.

When:

The PhD position should optimally start on January 6th 2020. For further information, please contact: Dr. Jonathan Lenoir (jonathan.lenoir@u-picardie.fr).

Duration:

Three years

Gross salary:

2 135 EUR/month

Application procedure:

To apply to this PhD position, you will need to send your application through the CNRS job portal, available both in French and in English. Scroll down towards the bottom of the webpage to find the “Search our Job Offers” button and look for this PhD position that should appear on the CNRS job portal from 1st October 2019 and should remain active for 21 days. You will need to register in the CV database and submit your application files via the CNRS job portal. To register, go to the “Candidate Area” at the bottom of the CNRS job portal and follow the instructions to create your own account. Please upload your CV together with a cover letter and the contact information of 3 references. For more information, you may contact Jonathan Lenoir (jonathan.lenoir@u-picardie.fr). The application deadline is October 22nd 2019.

Offre de Stage M2 en Ecologie Forestière : Caractérisation du Microclimat Sous Couvert Forestier

Contexte du stage : Le réchauffement climatique mesuré par les stations météo (c.-à-d. macroclimat) ne correspond pas nécessairement au réchauffement ressenti (c.-à-d. microclimat) par la biodiversité de la sous-trame boisée, car le microclimat y est bien souvent découplé des fluctuations du macroclimat extérieur. La modélisation du microclimat forestier constitue un défi de taille tant sur le plan numérique que calculatoire, car elle nécessite d’importantes quantités de données à fines résolutions spatiale et temporelle. Fort heureusement, les avancées technologiques en matière de télédétection 3D à haute résolution spatiale (p. ex. LiDAR terrestre ou aéroporté) et en termes de miniaturisation et d’automatisation des capteurs en environnement pour une prise de mesures à haute fréquence temporelle (p. ex. microsondes météo) permettent aujourd’hui de relever ce type de défi. Le projet IMPRINT porté par Jonathan Lenoir (CR CNRS) et financé par l’outil “Jeunes Chercheuses Jeunes Chercheurs” (JCJC) de l’Agence National de la Recherche (ANR) a justement pour ambition de combiner ces nouvelles technologies dans le but de modéliser le réchauffement microclimatique sous couvert forestier et d’améliorer les prédictions de redistribution de la biodiversité de la sous-trame boisée en contexte de réchauffement global du climat. C’est dans ce contexte que s’inscrira le stage de M2 dont l’objectif est détaillé ci-dessous.

Objectif du stage : L’objectif de ce stage de M2 sera de mettre en place un réseau de placettes forestières à équiper de microsondes de températures pour la caractérisation et le suivi du microclimat de la sous-trame boisée. Trois forêts domaniales gérées par l’Office National des Forêts (ONF) sont pressenties pour la mise en place du dispositif (voir figure ci-dessous). En plus de l’installation du réseau, le ou la stagiaire aura pour mission de caractériser chaque placette forestière sur le plan dendrologique (cf. inventaire des espèces ligneuses) et dendrométrique (cf. inventaire forestier typique) : mesures de circonférences ; estimation du couvert de la canopée au densitomètre ; et prises de photographies hémisphériques. En amont de la phase de terrain, le ou la stagiaire rédigera un protocole détaillé pour la récolte des données une fois sur place, en s’inspirant de travaux déjà publiés sur la thématique. De retour du terrain et sur la base des données dendrologiques et dendrométriques récoltées, le ou la stagiaire pourra réaliser une typologie d’habitat forestier à l’aide d’outils statistiques adaptés (p. ex. analyses multivariées).

Localisation des sites d'étude

Cartes et schéma présentant le dispositif de caractérisation du microclimat de la sous-trame boisée. Localisation (a) et zooms (b, c, d) des trois forêts domaniales pressenties pour l’étude (Aigoual, Blois et Mormal). Proposition d’installation d’un réseau de 30 placettes de suivi par fenêtre (e) à équiper de microsondes de températures et à décrire sur le plan dendrologique et dendrométrique (f). Cartes réalisées par Emilie Gallet-Moron.

Profil recherché : Nous recherchons un(e) étudiant(e) intéressé(e) et motivé(e), au profil recherche et/ou ingénieur(e). Un fort intérêt pour les sciences forestières, la biostatistique et la programmation sous le logiciel libre R est recommandé. De bonnes bases et connaissances en écologie forestière seront appréciées de même que des compétences dans un ou plusieurs des domaines mentionnés ci-dessus. Il est à noter que l’ensemble de ces compétences pourront être acquises ou renforcées au cours du stage. Une grande partie du stage étant consacrée à la mise en place d’un réseau de placettes forestières, le candidat ou la candidate devra montrer un goût prononcé pour le terrain et être titulaire du permis B. En effet, de nombreux déplacements sur les sites, parfois éloignés (p. ex. forêts domaniale de l’Aigoual), sont à prévoir. Au cours des missions sur le terrain, les frais de déplacements (remboursement des frais kilométriques) ainsi que les frais d’hébergement et de repas seront pris en charge par la structure d’accueil.

Période de stage : Stage recherche/ingénieur de 6 mois pouvant démarrer dès Janvier 2020 ou Février 2020.

Financement : Une gratification de stage de 577 EUR/mois est assurée dans le cadre du projet IMPRINT financé par l’ANR. A noter également que les remboursements des frais de mission couvriront largement (voir dépasseront) les dépenses à avancer.

Encadrement : Le candidat ou la candidate retenu(e) sera principalement encadré(e) par Jonathan Lenoir (CR CNRS) en collaboration avec plusieurs membres écologues de l’unité de recherche EDYSAN (Ronan Marrec, Vincent Le RouxEmilie Gallet-MoronFabien Spicher et le Professeur Guillaume Decocq).

Institution d’accueil : EDYSAN (UMR 7058 CNRS-UPJV).

Candidature : Pour candidater, envoyez un CV et une lettre de motivation adressée à Jonathan Lenoir (jonathan.lenoir@u-picardie.fr).

Offre de Stage M1 sur l’Impact du Cerisier Tardif sur la Physiologie du Hêtre Commun

Le contexte du stage est celui des invasions biologiques, un thème qui est particulièrement d’actualité en contexte de changements globaux et de mondialisation. Les invasions biologiques sont en effet rapidement devenues l’un des problèmes écologiques les plus coûteux à l’échelle de la planète, puisqu’elles peuvent profondément affecter l’agriculture et la sylviculture, altérer le fonctionnement des écosystèmes et des agrosystèmes, propager de nouvelles maladies et, plus généralement, interférer avec les activités humaines.

Dans une étude récente, Aerts et al. (2017) ont montré que la présence du cerisier tardif Prunus serotina Ehrh., espèce native des États-Unis, affectait la teneur en nutriments des espèces ligneuses co-occurrentes de la zone envahie, et notamment la teneur en azote foliaire du hêtre commun Fagus sylvatica L. en Forêt Domaniale de Compiègne. L’objectif du stage proposé est donc d’approfondir ces résultats et notamment d’étudier l’impact de P. serotina sur le métabolisme azoté et la dynamique de croissance de F. sylvatica.

Dans les zones envahies et non envahies de différent massifs forestiers du nord de la France, les performances (i.e. croissance), les traits fonctionnels foliaires (e.g. photosynthèse, SLA) et les paramètres physiologiques associés au métabolisme carboné (e.g. teneur en sucres) seront analysées chez F. sylvatica. Ces données permettront de mieux comprendre l’impact des espèces exotiques envahissantes sur le fonctionnement des écosystèmes envahis.

Pour mener à bien l’objectif énoncé, la personne recrutée : (1) participera avec l’appui de ses encadrants au design du protocole expérimental; (2) aidera à la planification et à l’organisation des expériences sur le terrain; (3) participera à l’acquisition des données sur le terrain, au prélèvement d’échantillons en forêt et aux analyses en laboratoire; (4) saisira et assurera la qualité des données; (5) et analysera les résultats.

La personne recrutée sera encadrée dans ses missions et dans la rédaction de son mémoire par ses responsables de stage.

Profil recherché : Master 1 ou Licence, avec un intérêt pour les sciences biologiques et naturalistes, travaillant de façon autonome et consciencieuse. Ce stage comporte des travaux à la fois en laboratoire et sur le terrain, il sera donc attendu un(e) candidat(e) ayant un intérêt certain pour le terrain. Des connaissances en physiologie végétale et écophysiologie sont recommandées.

Financement : Une gratification de stage de 577 EUR/mois est assurée dans le cadre du projet ISCARIOT piloté par Thomas Kichey et financé par la SFR Condorcet.

Structure d’accueil : EDYSAN (UMR 7058 CNRS-UPJV).

Encadrants / contact : Thomas Kichey – thomas.kichey@u-picardie.fr – Tél : +33 3 22 82 76 49

Durée du stage : 2 à 3 mois, printemps-été 2019.

Candidature : Pour candidater, envoyez un CV et une lettre de motivation adressée à l’encadrant principal.

Offre de Stage M2 en Traitement du Signal LiDAR : Apport de la Technologie LiDAR dans la Modélisation du Microclimat Sous Couvert Forestier

La technologie LiDAR (Light Detection And Ranging) est aujourd’hui très utilisée en écologie forestière car elle permet d’obtenir des images très détaillées de la structure tridimensionnelle du système étudié, surtout lorsque celui-ci est complexe. C’est notamment le cas des sylvosystèmes (écosystèmes forestiers gérés par la main de l’homme) dont la complexité de la structure verticale du couvert végétal (points classés végétation) s’ajoute à la complexité du modelé du terrain (points classés sol). Les signaux enregistrés lors d’un relevé LiDAR, qu’il soit aéroporté type ALS (Airborne Laser Scanning) ou terrestre type TLS (Terrestrial Laser Scanning), sont des nuages de points géoréférencés dans un espace à 3 dimensions et dont la densité de points projeté au sol varie de 5 à plus de 50 par m². Le LiDAR aéroporté (ALS) permet d’obtenir des images couvrant plusieurs centaines de km² mais dont la densité de points sera beaucoup plus faible que les images issues d’un LiDAR terrestre (TLS) couvrant une zone beaucoup plus restreinte (e.g. 4000 m²).

Les exploitations numériques de ces images à très haute définition sont potentiellement très nombreuses et avec des applications directes et très concrètes. Citons, par exemple, la modélisation du microclimat sous couvert forestier (Lenoir et al., 2017). Le réchauffement climatique mesuré par les stations météo (c.-à-d. macroclimat) ne correspond pas nécessairement au réchauffement ressenti (c.-à-d. microclimat) par les organismes vivant au sein de leur habitat naturel, car le microclimat y est bien souvent découplé des fluctuations du macroclimat extérieur. Le stade de régénération des principales essences forestières à forte valeur commerciale dépend du microclimat dans le sous étage. La modélisation de celui-ci constitue donc un enjeu commercial et un défi de taille tant sur le plan numérique que calculatoire car elle nécessite d’importantes quantités de données à fines résolutions spatiale et temporelle. Les avancées technologiques en matière de télédétection et de miniaturisation des sondes à haute résolution/fréquence spatiale et temporelle (e.g. LiDAR et microsondes météo) permettent aujourd’hui de relever ce type de défi. En parallèle, le développement récent d’algorithmes numériques, déterministes ou non, utilisant des techniques d’algèbre linéaire numérique est considérable et préside à nombre de méthodes de traitement automatique des données.

Le stage proposé a pour objectif d’appliquer les méthodes numériques modernes adaptées à l’analyse fine des points classés végétation pour calculer des indices de densité foliaire comme le LAI (Leaf Area Index) (Bouvier et al., 2015) ou bien la reconstruction d’images hémisphériques (cf. photos hémisphériques avec objectif fish-eye) pour estimer la fermeture du couvert (Alexander et al., 2013). Ce type d’indice sert d’indicateur de pénétration de la lumière dans le sous-étage forestier et pourra notamment être utilisé en tant que variable explicative du microclimat sous couvert forestier. Afin d’atteindre ces objectifs, le ou la stagiaire disposera d’un ensemble de jeux de données, dont des images LiDAR à très haute définition (12 points par m2) ainsi que des données de température sous couvert forestier issue d’un réseau de 180 sondes installées sur l’ensemble du massif de la forêt domaniale de Compiègne. L’analyse des données pourra se faire sous le logiciel libre R au sein duquel il existe déjà des librairies permettant l’analyse de données issues du LiDAR, telles que la librairie gapfraction.

Profil recherché : Nous recherchons un(e) étudiant(e) intéressé(e) et motivé(e), au profil recherche et/ou ingénieur(e). Le candidat ou la candidate retenu(e) sera principalement encadré(e) par Jonathan Lenoir (CR CNRS) et en collaboration avec plusieurs membres écologues et pédologues de l’unité de recherche EDYSAN (Hélène Horen, Boris Brasseur, Guillaume Decocq, Emilie Gallet-Moron, Fabien Spicher) ainsi que Jean-Paul Chehab du LAMFA. Le candidat ou la candidate retenu(e) pourra également bénéficier de collaborations en cours avec Sylvie Durrieu et Samuel Alleaume de l’unité de recherche TETIS. Un fort intérêt pour les biostatistiques, la foresterie, les mathématiques, la programmation sous le logiciel libre R et la télédétection est recommandé. De bonnes bases et connaissances dans un ou plusieurs de ces domaines sont souhaitées mais non obligatoires car ces compétences pourront être acquises ou renforcées au cours du stage.

Période de stage : Stage recherche/ingénieur de 6 mois pouvant démarrer dès Janvier 2019 ou Février 2019.

Financement : Une gratification de stage de 577 EUR/mois est assurée dans le cadre du projet ALLIANcE piloté par le Professeur Jean-Paul Chehab. Ce projet a pour ambition de réunir écologues et pédologues d’EDYSAN (UPJV, UMR) avec les spécialistes en mathématiques appliqués du LAMFA (UPJV, UMR) et du LMPA (ULCO, EA). L’objectif d’ALLIANcE est d’identifier et appliquer des méthodes numériques modernes pour une analyse fine de données forestières issues du LiDAR.

Institution d’accueil : EDYSAN (UMR 7058 CNRS-UPJV).

Encadrant principal : Jonathan Lenoir (CR CNRS).

Candidature : Pour candidater, envoyez un CV et une lettre de motivation adressée à Jonathan Lenoir (jonathan.lenoir@u-picardie.fr).

Wanted: Samples of Sycamore Maple

Dear friends and colleagues, I would like to make a new call for participation in sampling plant material. This time, it is about sampling leaves and seeds from sycamore maple (Acer pseudoplatanus) in both its native and non-native range. Although this fellow is native in most part of central Europe, it is considered invasive and even problematic in some parts of north-western Europe. In the UK, sycamore maple has a pretty bad reputation. In her book entitled “The Long, Long Life of Trees“, Fiona Stafford tells us the story of sycamore maple in the UK. As she wrote in her book:

Many rail companies now run special leaf-fall timetables from early October, routinely warning passengers that trains may arrive at their destinations up to three minutes later than shown. It is a response to a problem that hit the headlines in the 1990s […] As showers of moist leaves land on railway lines every autumn and become compressed, the slick-coated tracks can cause trains to skid. The clearance operation takes time and costs money […] But where do these annoying leaves come from? Mostly, it seems, from the sycamore tree […] Home-grown or imported, the sycamore’s adptable nature means that it will always be quick to rush in where other trees fear to tread“.

Acer_pseudoplatanus_2

Leaves and seeds from sycamore maple

A colleague of mine here in Amiens, Thomas Kichey, is leading a project on the invasion dynamic of sycamore maple. For that reason, we need samples (leaves and seeds: see picture above) from as many different locations as possible to cover its geographic range (see maps below). We would be very grateful if you could help us in this endeavor, especially if you are located in a region where sycamore maple is considered invasive (Australia, New-Zealand, USA, etc.). We have two different protocols whether it is fall (seed sampling) or spring (leaf sampling) time in your area. For us  in France, right now, it is time for seed sampling but if you are in Argentina or in New-Zealand, you can sample fresh leaves for us. This is the beauty of having two hemispheres.

Acer_pseudoplatanus_range.svg

Native range of sycamore maple in Europe and occurrences beyond its native range

Acer_pseudoplatanus_occurrences

Occurrences of sycamore maple registered in GBIF

Leaf sampling design of sycamore maple at spring

We recommand to sample leaves in natural populations of sycamore maple (i.e. in naturally regenerated stands, i.e. a public forest – no park, no private garden).

For each sample considered as a population ex-nihilo (i.e. forest), 2 fresh leaves (~20 cm2 leaf blade) are collected on 20 adult trees throuhout a woodland patch or a larger forest stand (pairwise distance between individuals ~30 m) and stored in a paper bag (or in between journal paper sheets). We recommend using separate paper envelopes to store the 2 leaves of a given individual tree. Label each envelope/sample with:

  • the 2-digits country code (https://www.worldatlas.com/aatlas/ctycodes.htm);
  • the first 3 first letters of the sampled area (cf. name of the woodland patch or forest stand or the closest town/city near the sampled location, i.e. the population);
  • the 2 digits corresponding to the iterative number of the individual sampled – if each individual is located by GPS.

e.g. FR – HIR – 01 = first individual collected in Hirson forest, France

Optional: when possible, locate the sampled trees with a GPS, coordinates are to be sent with the samples. You can write coordinates in latitude/longitude format (WGS84) directly on the envelope.

The 20 (optimally) envelopes/samples collected in one forest patch or population are pooled in one larger envelope labeled with:

  • the name of the sampler and/or his/her e-mail (e.g. thomas.kichey@u-picardie.fr);
  • the sampling state (e.g. France – FR);
  • the population id (e.g. Hirson – HIR);
  • GPS population location (e.g 49°57’4.54″N; 4° 8’9.28″E – could be extracted from GoogleEarth).

The samples can be sent to:

Thomas Kichey
Université de Picardie Jules Verne – UFR Sciences
Unité EDYSAN Ecologie et Dynamique des Systèmes Anthropisés (UMR CNRS 7058)
33 rue Saint-Leu
80000 AMIENS
FRANCE

A photo of the sampled stand can be sent by email to: thomas.kichey@u-picardie.fr

Seed sampling design of sycamore maple (Acer pseudoplatanus L.), at fall

We recommand to sample seeds in natural populations of sycamore maple (i.e. in naturally regenerated stands, i.e. a public forest – no park, no private garden).

For each population, about 100 mature seeds are collected on the ground below an adult tree (or in the branch of the adult tree) located in the middle of the stand and stored (dry) in an envelope or paper bag (one paper bag per stand).

Optional: when possible, locate the sampled trees with a GPS.

The samples collected in one tree are labeled with:

  • the name of the sampler and/or his/her e-mail (e.g. thomas.kichey@u-picardie.fr);
  • the sampling state (e.g. France – FR);
  • the population id (e.g. Hirson – HIR);
  • GPS population location (e.g 49°57’4.54″N; 4° 8’9.28″E – could be extracted from GoogleEarth).

The samples can be sent to:

Thomas Kichey
Université de Picardie Jules Verne – UFR Sciences
Unité EDYSAN Ecologie et Dynamique des Systèmes Anthropisés (UMR CNRS 7058)
33 rue Saint-Leu
80000 AMIENS
FRANCE

A photo of the stand can be sent by email to: thomas.kichey@u-picardie.fr

Offre de Stage M2 Recherche en Génétique du Paysage : Evaluation de la Connectivité Fonctionnelle de Forêts Tempérées Décidues en Contexte Hautement Fragmenté

La fragmentation forestière est une menace pour la biodiversité. Néanmoins, l’impact de cette fragmentation sur la dispersion et les flux de gènes est difficile à estimer car il dépend à la fois des espèces (traits d’histoire de vie dont la dispersion) et des paysages (temps écoulé depuis la fragmentation, étendue et configuration spatiale de l’habitat) concernés (Baguette et al., 2013). Cet effet est en outre modulé par le niveau de spécialisation écologique des espèces. Ainsi, il est plus marqué chez les espèces sédentaires que chez les espèces mobiles (Callens et al., 2011) et chez les espèces «spécialiste» que chez les espèces «généralistes» (Bonte et al., 2003 ; Entling et al., 2011). Les plantes Geum urbanum (la benoîte commune) et Primula elatior (l’oseille des bois) sont toutes deux des espèces communes de forêts tempérées Européenne. Elles constituent des modèles biologiques contrastées de par leur capacité de dispersion et leur degré de spécialisation écologique : l’espèce spécialiste P. elatior et l’espèce généraliste G. urbanum étant respectivement caractérisées par une faible et forte capacité de dispersion.

Le stage proposé a pour objectif d’évaluer la connectivité fonctionnelle dans un système fragmenté (forêts tempérées décidues) au moyen de flux géniques estimés entre populations des deux espèces modèles. La diversité génétique passée versus contemporaine sera mesurée à partir de la variation de gènes cytoplasmiques (ADNcp – variation génétique historique) et nucléaires (loci microsatellites – flux génique contemporain) (Arens et al., 2004 ; Van Geert et al., 2006 ; Seino et al., 2014). Deux fenêtres paysagères ont été sélectionnées dans deux régions françaises distinctes, en l’occurrence la région Hauts-de-France (Thiérache) et la région Bretagne (Zone Atelier Armorique). Parmi ces fenêtres, l’une présente des taches d’habitat interconnectées par un réseau dense de haies (bocage) tandis que l’autre est caractérisée par un système fortement fragmenté et pauvre en haies (openfield). Dans la région Hauts-de-France, une troisième fenêtre paysagère a été également retenue : elle est une zone non fragmentée composée de «taches virtuelles» distribuée dans une matrice forestière (fenêtre témoin). Les individus ont été collectés dans les fragments forestiers et dans les haies au cours de deux campagnes d’échantillonnage (2017 et 2018). La connectivité fonctionnelle et la structure génétique des populations seront investiguées au moyen de méthodes classiques d’analyses exploratoires (DAPC) (Jombart et al., 2008) et bayésiennes (Pritchard et al., 2000 ; Guillot et al., 2005). La relation entre structure du paysage et structure génétique sera évaluée à partir d’approches corrélatives et d’approches fondées sur la théorie des graphes. Le ou la stagiaire est par ailleurs encouragé(e) à proposer et à exploser d’autres pistes d’analyse.

This slideshow requires JavaScript.

Nous recherchons un(e) étudiant(e) intéressé(e) et motivé(e). Le candidat ou la candidate retenu(e) sera encadré(e) par Annie Guiller (PR), Jonathan Lenoir (CR CNRS) et Pedro Poli (PhD). Un fort intérêt pour la génétique des populations, l’écologie du paysage, la biologie évolutive et l’analyse statistique est recommandé. De bonnes bases et connaissances dans ces domaines sont souhaitées mais non obligatoires car ces compétences pourront être acquises ou renforcées au cours du stage.

Financement : Fondation pour la Recherche sur la Biodiversité (FRB, AO 2018). Le stage s’inscrit dans le cadre du projet Européen WOODNET (BiodivERsa, APR 2017) et du projet régional PEGASE (Région Picardie, APR 2016).

Institution d’accueil : EDYSAN

Encadrants : Annie Guiller (Professeur), Jonathan Lenoir (CR CNRS) et Pedro Poli (doctorant).

Candidatures : Pour candidater, envoyez un CV et une lettre de motivation (en Anglais ou Français) à : annie.guiller@u-picardie.fr, jonathan.lenoir@u-picardie.fr et pedro.poli@u-picardie.fr. N’hésitez pas à nous contacter pour tout renseignement supplémentaire.

Internship Opportunity in Landscape Genetics: Assessing Gene Flow among Populations of 2 Contrasting Herbaceous Plants within a Fragmented System

Habitat fragmentation is a major threat to biodiversity. Nonetheless, habitat fragmentation may have an unequal influence over genetic flow depending on specie life history traits and dispersion capacities (Baguette et al., 2013). Generally, the effects of fragmentation on genetic flow is more pronounced for sessile organisms, compared with more mobile or vagile ones (Callens et al., 2011), and for specialists compared with generalists (Bonte et al., 2003; Entling et al., 2011). The plant species Geum urbanum (wood avens: on the left picture below) and Primula elatior (true oxlip: on the right picture below) are common within highly fragmented European temperate forests. They are nonetheless two contrasting models in terms of dispersion abilities and ecological specialisation: P. elatior being a notorious forest specialist with limited dispersal abilities.

The proposed internship aims at evaluating functional connectivity in a fragmented system (temperate deciduous forests) by means of indirect estimators for this two contrasting model species. Contemporary and past genetic diversity will be measured using cytoplasmic genes (cpDNA – historic genetic variation) and microsatellites loci (contemporary gene flow) (Arens et al., 2004; Van Geert et al., 2006; Seino et al., 2014). Two landscape windows were selected for both the Hauts-de-France region (Thiérache) and the Brittany region (Zone Atelier Armorique): one window is characterized by forest patches interconnected through a dense hedgerow network (locally called ‘bocage’) while the other window is characterized by a highly fragmented system with few to no hedgerows. For the Hauts-de-France region, a third landscape window was selected as a control or baseline unfragmented system based on ‘virtual forest patches’ spread out across a forest matrix. Individuals were sampled in forest patches (or virtual forest patches) and in hedgerows during two field seasons (i.e. in 2017 and 2018). Functional connectivity and population genetic structure will be investigated using classic methods (DAPC) (Jombart et al., 2008) and Bayesian assigning tests (Pritchard et al., 2000; Guillot et al., 2005) for characterizing genetic structure. The role of landscape features on genetic structure will be assessed by means of correlative approaches and graph-theory methods. The successful applicant will be highly encouraged to propose other analytical methods if he/she deems fit.

This slideshow requires JavaScript.

We seek a highly motivated and curious candidate. The successful candidate will be closely supervised by Professor Annie Guiller, Senior Researcher Jonathan Lenoir and PhD student Pedro Poli during his/her internship. He/She should be able to work independently. Strong interest in population genetics, landscape ecology, evolution and biostatistics are recommended, meaning that a good background in those domains is desired, but not mandatory. Those skills will be developed during the internship.

Funding: We acknowledge a grant from the “Fondation pour la Recherche sur la Biodiversité” (FRB, AO 2018).

Internship stipend: About 500 EUR per month during 6 months (January-June 2019).

Starting date and duration: The succesful applicant is expected to start his/her internship on the 7th of January 2019 for a 6 month duration.

Host Institute: Edysan is a mixed research unit involving the CNRS and Université de Picardie Jules Verne institutes. The research work developed in Edysan aims at understanding natural and semi-natural ecosystem functioning and impacts environment changes over those systems. We are well placed in Amiens, a nice and active city in the Picardy region. The laboratory has an ongoing partnership with Regional Molecular Biology Centre (CRRBM) that dispose of state of the art equipment and infrastructure.

Supervisors: Annie Guiller (Professeur), Jonathan Lenoir (CR CNRS) and Pedro Poli (PhD student).

Application deadline: 30th November 2018. Potential candidates should send a CV and a cover letter (in English or French) to: annie.guiller@u-picardie.fr, jonathan.lenoir@u-picardie.fr and pedro.poli@u-picardie.fr